Effects of electrode surface roughness on motional heating of trapped ions

نویسندگان

  • Kuan-Yu Lin
  • Nergis Mavalvala
چکیده

Electric field noise is a major source of motional heating in trapped ion quantum computation. While the influence of trap electrode geometries on electric field noise has been studied in patch potential and surface adsorbate models, only smooth surfaces are accounted for by current theory. The effects of roughness, a ubiquitous feature of surface electrodes, are poorly understood. We investigate its impact on electric field noise by deriving a rough-surface Green's function and evaluating its effects on adsorbate-surface binding energies. At cryogenic temperatures, heating rate contributions from adsorbates are predicted to exhibit an exponential sensitivity to local surface curvature, leading to either a large net enhancement or suppression over smooth surfaces. For typical experimental parameters, orders-of-magnitude variations in total heating rates can occur depending on the spatial distribution of absorbates. Through careful engineering of electrode surface profiles, our results suggests that heating rates can be tuned over orders of magnitudes. Thesis Supervisor: Isaac L.Chuang Title: Professor of Physics and Electrical Engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 7 . 15 28 v 1 [ qu an t - ph ] 1 0 Ju l 2 00 7 Simplified motional heating rate measurements of trapped ions

We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied the...

متن کامل

Scaling and suppression of anomalous heating in ion traps.

We measure and characterize anomalous motional heating of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of heating with electrode proximity is measured, and when the electrodes are cooled from 300 to 150 K, the heating rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional hea...

متن کامل

Suppression of heating rates in cryogenic surface-electrode ion traps.

Dense arrays of trapped ions provide one way of scaling up ion trap quantum information processing. However, miniaturization of ion traps is currently limited by sharply increasing motional state decoherence at sub-100 mum ion-electrode distances. We characterize heating rates in cryogenically cooled surface-electrode traps, with characteristic sizes in the 75 to 150 mum range. Upon cooling to ...

متن کامل

Reduction of trapped-ion anomalous heating by in situ surface plasma cleaning

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. Althou...

متن کامل

Microfabricated surface-electrode ion trap for scalable quantum information processing.

Individual laser-cooled 24Mg+ ions are confined in a linear Paul trap with a novel geometry where gold electrodes are located in a single plane and the ions are trapped 40 microm above this plane. The relatively simple trap design and fabrication procedure are important for large-scale quantum information processing (QIP) using ions. Measured ion motional frequencies are compared to simulations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016